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Abstract. Non-local methods for image denoising and inpainting have
gained considerable attention in recent years. This is in part due to their
superior performance in textured images and regions, a known weakness
of purely local methods. Local methods on the other hand have demon-
strated to be very appropriate for the recovering of geometric structure
such as image edges. The synthesis of both types of methods is a trend
in current research. Variational analysis in particular is an appropriate
tool for a unified treatment of local and non-local methods. In this work
we propose a general variational framework for the problem of non-local
image inpainting, from which several previous inpainting schemes can be
derived, in addition to leading to novel ones. We explicitly study some of
these, relating them to previous work and showing results on synthetic
and real images.

1 Introduction

Image inpainting, also known as image completion or disocclusion, is an active
research area in image processing. The purpose of inpainting is to obtain a
visually plausible image interpolation in a region in which data are missing due
to damage or occlusion. Usually, to solve this problem, the only available data
is the image outside of the region to be inpainted. In addition to its theoretical
importance, image inpainting is a very important problem due to its applications
to image and video editing and restoration.

Inpainting methods found in the literature can be classified into two groups:
geometry- and texture-oriented methods.

Geometry-oriented methods. Images are modeled as functions with some
degree of smoothness (expressed for instance in terms of the curvature of the
level lines or the total variation of the image), and the interpolation is performed
by continuing and imposing this model inside the inpainting domain. This has
been performed either using variational techniques, as for instance in [3, 11, 12,
19, 28, 29], or with PDEs [4, 7, 36]. These methods show a good performance in
propagating smooth level lines or gradients. However they fail in the presence of
texture. This is often referred to as structure or cartoon inpainting.

Texture-oriented methods. Texture-oriented inpainting was born as an ap-
plication of texture synthesis, e.g., [18, 21]. Its recent development was triggered
in part by [18, 37] using non-parametric sampling techniques. In these works tex-
ture is modeled as a two dimensional probabilistic graphical model , in which the
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value of each pixel is conditioned by its neighborhood. These approaches rely
directly on a sample of the desired texture to perform the synthesis.

In practice these methods work progressively by expanding a region of syn-
thesized texture. The value for a target pixel x is copied from the center of a
square patch in the sample image, chosen among those that best match the avail-
able portion of the patch centered at x. Levina and Bickel [26] recently provided
a probabilistic theoretical justification for this strategy.

This method (as explained above or with some modifications) has been exten-
sively used for inpainting [5, 6, 14, 17, 18, 31]. As opposed to geometry-oriented
inpainting, these so-called exemplar-based approaches, are non-local : To deter-
mine the value at x, the whole image may be scanned in the search of a matching
patch.

Since these texture approaches are greedy procedures (each hole pixel is vis-
ited only once), the results are very sensitive to the order in which pixels are
processed [14]. This issue was addressed in [24, 38] where the inpainting problem
is stated as the optimization of an energy derived from probabilistic graphical
models (see also [25]).

A variational justification for texture-based methods was presented in [16],
where the inpainting problem is reformulated as that of finding a correspondence

map Γ : O → Oc, O being the inpainting domain and Oc its complement w.r.t.
the image domain. Denoting the image by u, the inpainted value at position
x ∈ O is then given by u(x) = u(Γ (x)), Γ (·) being the correspondence map. The
authors proposed a continuous energy functional in which the unknown is the
correspondence map itself:

E(Γ ) =

∫

O

∫

Ωp

(u(Γ (x − y)) − u(Γ (x) − y))2dydx,

where Ωp is the patch domain (centered at (0, 0)). Thus Γ should map a pixel x
and its neighbors in such a way that the resulting patch is close to the one cen-
tered at Γ (x). This model has been the subject of further (theoretical) analysis
by Aujol et al.[1].

A different variational model was presented in [32]. Images are modeled as en-
sembles of patches on a given patch manifold. For inpainting, the patch manifold
can be learned from the set of patches in the hole’s complement. The method is
iterative, with each iteration having two steps. First, the patches in the hole are
projected onto the manifold. Since this is done for each patch independently, the
projected patches are not necessarily coherent with each other, i.e.overlapping
patches may have different values in the overlap region. Therefore, in the second
step, an image is computed by averaging the patches in the ensemble.

Exemplar-based methods provide impressive results in recovering textures
and repetitive structures. However, their ability to recreate the geometry without
any example is limited and not well understood. Therefore, different strategies
have been proposed which combine geometry and texture inpainting [5, 10, 17,
23]. These methods usually decompose the image in some sort of structure and
texture components. Structure is reconstructed using some geometry-oriented
scheme, and this is used to guide the texture inpainting.
Contributions of this work. Despite these combined methods, geometry and
texture inpainting are still quite separate fields, each one with its own analy-
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sis and implementation tools. Variational models as the one introduced in this
paper can provide common tools allowing a unified treatment of both trends.
We therefore propose a variational framework for non-local image inpainting as
a contribution to the modeling and analysis of texture-oriented methods. Our
formulation is rather general and different inpainting schemes can be derived
naturally from it, via the selection of the appropriate patch metric.

In the present work we study three of them, patch NL-means, -medians, and
-Poisson. The former is related to the method of [38] and can be interpreted
in terms of the mean shift [13] and the manifold models of [32]. The other
schemes are, to the best of our knowledge novel. The latter imposes coherence
of the gradients, in addition to that of the gray levels, which implies a smoother
continuation of the information across the boundary and inside the inpainting
domain, thus acting as a basic local regularization.

Our work is related to recent variational formulations of non-local denois-
ing ([2, 9]) by Gilboa and Osher [20]. The image redundancy and self-similarity
(measured as patch similarity) is encoded by a non-local weight function w :
O × Oc → R. This function serves as a fuzzy correspondence, and differs from
the works [1, 16], although a (eventually multivalued) correspondence map can
be approximated as a limit of our model.
Notation. Images are denoted as functions u : Ω → R, where Ω denotes the
image domain, usually a rectangle in R

2. Pixel positions are denoted by x, x′,
z, z′ or y, the latter for positions inside the patch. A patch of u centered at x is
denoted by pu(x) = pu(x, ·) : Ωp → R, where Ωp is a rectangle centered at (0, 0).
The patch is defined by pu(x, y) = u(x + y), with y ∈ Ωp. O ⊂ Ω is the hole or
inpainting domain, and Oc = Ω \ O. We still denote by u the part of the image
u inside the hole, while û is the part of u in Oc: û = u|Oc . Additional notation
will be introduced in the text.

2 Variational framework

Our variational framework is inspired by the following non-local functional

Fw(u) =

∫

O

∫

Oc

w(x, x′)(u(x) − û(x′))2dx′dx. (1)

The weight function w : O × Oc → R
+ measures the similarity between patches

centered in the inpainting domain and in its complement. Gaussian weights are
commonly used, given by w(x, x′) = exp

(
− 1

h
‖pu(x) − pû(x′)‖2

)
, where ‖ · ‖ is a

weighted L2 norm in the space of patches and h is the scale. A similar functional
was proposed in [20] as a non-local regularization energy in the context of image
denoising which models the non-local means filter [2, 9] (see [35] for a different
model of non-local means). An extension to super-resolution is presented in [34].

In [20] the weights are considered known and remain fixed through all the
iterations. While this might be appropriate in applications where the weights
can be estimated from the noisy image, in the image inpainting scenario here
addressed, weights are not available and have to be inferred together with the
image ([?,33]). One of the novelties of the proposed framework is the inclusion
of adaptive weights in a variational setting.
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For this reason, we will consider the weight function w as an additional
unkown. Instead of prescribing explicitly the Gaussian functional dependence of
w w.r.t. u, we will do it implicitly, as a component of the optimization process. In
doing so, we obtain a simpler functional, avoiding to deal with the complex, non-
linear dependence between w and u. In our formulation, w(x, ·) is a probability
density function,

∫
Oc w(x, x′)dx′ = 1, and can be seen as a relaxation of the one-

to-one correspondence map of [1, 16], providing a fuzzy correspondence between
each x ∈ O and the complement of the inpainting domain.

In this setting, we propose an energy which contains two terms, one of them
is inspired by (1) and measures the coherence between the pixels in O and those
in Oc, for a given similarity weight function w. This permits the estimation of
the image u from the weights w. The second term allows us to compute the
weights given the image. The complete proposed functional is

E(u, w) =
1

h
F̃w(u) −

∫

eO

Hw(x)dx, (2)

where

F̃w(u) =

∫

eO

∫

eOc

w(x, x′)‖pu(x) − pû(x′)‖a,ϕdx′dx, (3)

for a given norm-like function ‖ · ‖a,ϕ between patches, and

Hw(x) = −

∫

eOc

w(x, x′) log w(x, x′)dx′,

is the entropy of the probability w(x, ·).

We take Õ, the extended inpainting domain, as the set of centers of patches

that intersect the hole, i.e.Õ = O + Ωp = {x ∈ Ω : (x + Ωp) ∩ O 6= ∅}. Thus,

patches pû(x′) centered in x′ ∈ Õc are entirely outside O (Figure 1), simplifying
the Euler-Lagrange equation for the minimizer. Accordingly, we consider that

the weight function w is defined over Õ × Õc and
∫

eOc w(x, x′)dx′ = 1.

For a simplified presentation, we assume that Õ + Ωp ⊆ Ω, i.e.every pixel

in Õ supports a patch centered on it and contained in Ω. This is not true if
the inpainting domain reaches the boundary of the image, and details on the
treatment of this situation are given in Section 5. Analogously, we also shrink

Õc to have Õc + Ωp ⊆ Ω.
Let us now make some additional comments on the functional. The term

(u(x) − û(x′))2 in Fw, penalizing differences between pixels, is substituted by
‖pu(x) − pû(x′)‖a,ϕ. This has to be understood together with the inclusion of

the second term, which integrates the entropy of each probability w(x, ·) over Õ.

For a given completion u, and for each x ∈ Õ, the optimum weights minimize
the mean patch error for pu(x), given by

∫
eOc w(x, x′)‖pu(x) − pû(x′)‖a,ϕdx′,

while maximizing the entropy. The resulting weights are Gaussian, as can be
confirmed easily by derivating the energy. This can be related to the principle
of maximum entropy [22], widely used for inference of probability distributions.
The parameter h controls the trade-off between both terms and is also the scale
parameter of the Gaussian weights. Since w(x, ·) is a probability, we discard
trivial minima of E with w(x, x′) = 0 everywhere.
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The patch norm-like function. Patches are functions defined on Ωp, and
are compared using ‖ · ‖a,ϕ. We consider a non-decreasing and continuously
differentiable function ϕ : R

+ → R
+ with ϕ(0) = 0 and define ‖ · ‖a,ϕ by

‖p‖a,ϕ =

∫

Ωp

ga(y)ϕ(|p(y)|)dy,

where ga is an intra-patch weight function, a Gaussian centered at the origin
with standard deviation a. The L1 and the squared L2 norms are particular
cases of ‖ · ‖a,ϕ when ϕ(t) = t and ϕ(t) = t2, respectively. In Section 3 we
consider another norm involving derivatives of the patch. As will be described
below, the patch norm determines not only the similarity criterion but also the
image synthesis, and thus is a key element in the framework.

2.1 Probabilistic-geometric model interpretation

The proposed model can be written in terms of the generalized Kullback-Leibler
divergence [15]. Given two positive and integrable functions p, q defined over a
certain measure space X , the generalized Kullback-Leibler divergence is given by:

KL(p, q) =
∫
X

p(s) log
(

p(s)
q(s)

)
ds−

∫
X

p(s)ds+
∫
X

q(s)ds, assuming that the integrals

exist. With this notation (and taking into account that w(x, ·) is a probability)
the functional E can be written as

E(u, w) =

∫

eO

KL (w(x, ·), r(x, ·)) dx −

∫

eO

∫

eOc

r(x, x′)dx′dx,

where r is the Gaussian weight function r(x, x′) = exp
(
− 1

h
‖pu(x) − pû(x′)‖a,ϕ

)
.

The first term integrates the divergence between the functions w(x, ·) and r(x, ·),

for each x ∈ Õ. The second term can be interpreted by noticing that

q̃(x) =

∫

eOc

r(x, x′)dx′ (4)

is a density estimate (in the patch space) of the set of patches in Oc: The higher

the amount of patches in Õc close to pu(x) (according to the scale parameter h),
the higher the value of q̃.

The minimizers (u∗, w∗) are obtained when w∗(x, x′) = r∗(x, x′)/q̃∗(x), (Gaus-
sian weights normalized by (4)), and the patches of the inpainted image are in
regions of high density in the patch space. This provides a geometric intuitive
interpretation of our variational formulation. The image is considered as an en-

semble of overlapping patches. Known patches in Õc are fixed, forming a patch

density model used to estimate the patches in Õ. The richness of the frame-
work is given in part by the fact that different norms in the patch space induce
inpainting schemes of different nature, as we are going to see next.

2.2 Minimization of E

We have formulated the inpainting problem as the constrained optimization

(u∗, w∗) = arg min
u,w

E(u, w) subject to

∫

eOc

w(x, x′)dx′ = 1 ∀x ∈ Õ. (5)
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To minimize the energy E, we use an alternate coordinate descent algorithm.
At each iteration, two optimization steps are solved: The constrained minimiza-
tion of E with respect to w while keeping u fixed; and the minimization of E with
respect to u with w fixed. This procedure yields the following iterative scheme

1. [Initial Condition] Given u0(x) with x ∈ O.

2. [Weights Update] wk = arg minw E(uk, w), subject to
∫

eO
w(x, x′)dx′ = 1.

3. [Image Update] uk+1 = arg minu E(u, wk).

4. [Stopping Criterion] If ‖uk+1 − uk‖ > τ , go back to step 2.

In the weights update step, the minimization of E w.r.t. w yields:

wk(x, x′) =
1

q̃(x)
exp

(
−

1

h
‖puk

(x) − pû(x′)‖a,ϕ

)
.

The normalizing factor q̃(x) is the density estimate given by (4), for patch puk
(x).

The parameter h determines the selectivity of the similarity. If h is large,
maximizing the entropy becomes more relevant, yielding weights which are less
selective. In the limit, when h → ∞, w(x, ·) becomes a uniform distribution

over Õc. On the other hand, a small h yields weights which concentrate on the
patches close to pu(x). In fact, as we will mention later on, in the limit as h → 0,
w(x.·) can be considered as an approximation to an (eventually multivalued)
correspondence.

The image update step deserves more attention and is described next.

Image update step. We now detail the derivation of the image update step for
the cases ϕ(t) = t2 and ϕ(t) = t. We refer to the resulting algorithms as patch-
wise non-local means (patch NL-means), and medians (patch NL-medians), re-
spectively.

Patch-wise non-local means. If ϕ(t) = t2 the image energy term is quadratic on
u, and its minimum for fixed weights w can be computed explicitly leading to a
non-local average:

u(x) =
1

C(x)

∫

Ωp

ga(y)

∫

eOc

w(x − y, z′)û(z′ + y)dz′dy, (6)

for each x ∈ O, where the normalization constant C(x) is given by C(x) =∫
Ωp

ga(y)dy = A(Ωp), the area of the patch (measured according to ga).

Figure 1 explains this equation. The value at x considers all patches con-
taining x. For instance the patch pu(x − y) covers x, pu(x − y, y) = u(x). This
patch is compared to all patches in the complement, pû(z′), yielding the weights
w(x − y, z′). Each of these patches contributes the term w(x − y, z′)û(z′ + y) to
the average, i.e.its value at position y weighted by w(x − y, z′).

Patch-wise non-local medians. We now consider the L1 norm in the energy E,
corresponding to ϕ(t) = t. The Euler equation for u, given the weights w, is

δuE(u, w)(z) =

∫

Ωp

ga(y)

∫

eOc

w(z − y, x′)sign[u(z) − û(x′ + y)]dx′dy = 0. (7)
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Fig. 1. Patch-wise non-local means inpainting. The value at x ∈ O is computed using
all the patches that overlap x. The patch centered at x − y contributes with the term

w(x − y, z′)û(z′ + y) to the average for each z′ ∈ eOc.

The solution of this equation is given by a weighted median of the values outside
the hole. We can see this easily by defining z′ = x′ + y and rewriting Eq. (7) as

δuE(u, w)(z) =

∫

Oc

sign[u(z) − û(z′)]ρz(z
′)dz′,

where

ρz(z
′) :=

∫

Ωp

χ eOc(z
′ − y)ga(y)w(z − y, z′ − y)dy. (8)

For a given z ∈ O, the function ρz : Oc → R
+ weights the contribution of each

location z′ to the median. The quantity ρz(z
′) is computed by integrating the

similarity w(z − y, z′ − y) between all patches that overlap z′ and those that
overlap z in the same relative position. It tells us how much evidence there is
supporting u(z′) as the intensity value for z. The function χ eOc takes the value

1 on Õc and 0 on Õ.

2.3 Revisiting related work

We conclude this section by further connecting our work with previous art. The
method in [38] is closely related to the patch NL-means scheme of Eq. (6). The
key difference lies in the underlying theoretical model. The problem is addressed
as a MRF, where pixels outside the hole are observable variables, missing pixels
in the hole are the parameters, and the hidden variables are given by the cor-
respondence Γ : O → Oc, which assigns a patch outside the hole to each x in
O. The method can be seen as an approximate EM algorithm for maximizing
the log-likelihood w.r.t. the pixels in O, and some approximations have to be
taken to make the optimization tractable. Based on heuristics, the authors also
propose to use more robust estimators than the mean for the synthesis of pixels.
With the framework here proposed, robust estimators (as the median) naturally
result from particular choices of the patch norm ‖ · ‖a,ϕ.

The patch NL-means algorithm is also related to the interesting manifold im-
age models of [32]. Eq. (6) can be split into two steps which are analog to Peyré’s

manifold and image projection steps. First, for each patch centered in Õ we com-
pute a new patch as a weighted average of all patches in the complement, accord-

ing to the patch similarity weights pMS
u (z) :=

∫
eOc w(z, z′)pû(z′)dz′ with z ∈ Õ.

Doing this for each hole position yields an incoherent ensemble of patches. The
image is obtained by averaging these patches: u(z) = 1

A(Ωp)

∫
Ωp

pMS
u (z−y, y)dy.
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We use a density model, instead of the manifold model of [32]. Indeed, pMS
u (x)

is the mean shift operator applied to pu(x). It is known that the iteration of this
operator corresponds to an adaptive gradient ascent of the Parzen estimate of a
PDF [13], which in this case is generated by the set of patches in the complement
of the hole. The use of a density model entails some advantages, mainly from
the computational point of view, learning a manifold model is computationally
costly. Furthermore, the assumption that patches lie on a manifold is question-
able (one could think for instance in a stratification as a more realistic model),
and its dimension is hard to determine for real images.

3 Higher order variational models

The proposed variational framework allows the introduction of derivatives of the
image, by considering them in the patch norm used in (3). In this section we
study a functional using the L2 norm of the gradients of the patches,

‖p(y)‖2
a,∇ =

∫

Ωp

ga(y)‖∇p(y)‖2
2dy,

where ‖ · ‖2 is the Euclidean norm in R
2. Firstly, the similarity weights are

now based on patch gradients, and secondly, the image update step is given by
a non-local Poisson equation, i.e.a Poisson equation with non-local coefficients.

The functional is obtained by substituting in (2) the image energy term F̃w(u) =∫
eO

∫
eOc w(x, x′)‖pu(x) − pû(x′)‖2

a,∇dx′dx (we assume that u|Oc = û).
The Euler equation w.r.t. u of the resulting functional is

∇ · [C(z)∇u(z)] = ∇ · v(z), (9)

for all z ∈ O, where u|Oc = û and the field v : O → R
2 is given by

v(z) =

∫

Ωp

ga(y)

∫

eOc

w(z − y, x′)∇û(x′ + y)dx′dy.

The solutions are minimizers of
∫

eO
C(z)‖∇u(z) − v(z)‖2

2dz (as before, C(z) =
A(Ωp)). Therefore, u is computed as the image with the closest gradient (in the
L2 sense) to the guiding vector field v, which corresponds to a non-local weighted
average of the gradients in the complement. The coefficients in the average have
exactly the same form as in (6). The only difference is that the patch similarity
weights used here are Gaussian weights of the L2 norm of the gradients. See [30]
for further uses of the Poisson equation in image editing.

This energy can be combined with the patch NL-means energy by considering
a linear combination of the corresponding image energy terms. The resulting
scheme computes the weights based on the image together with its gradient, and
updates the image by solving a linear combination of Eqs. (6) and (9).

4 Confidence mask

For large inpainting domains, it is useful to introduce a mask κ : Ω → (0, 1]
which assigns a confidence value to each pixel, depending on the certainty of its
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information (see also [14, 24]). This will help in guiding the flow of information
from the boundary towards the interior of the hole, eliminating some local min-
ima and reducing the effect of the initial condition. The resulting image energy
term takes the form

F̃w(u) =

∫

eO

∫

eOc

κ(x)w(x, x′)‖pu(x) − pû(x′)‖a,ϕdx′dx,

where κ modulates the penalization of the incoherences between w and the ϕ-
norm between patches.

The effect of κ on the image update step is easier to visualize on the evi-
dence function ρz , Eq. (8). Recall that this function gathers all evidence sup-
porting u(z′) as a value for u(z), for each z′ ∈ Oc. As in Eq. (8), now tak-
ing κ into account, we obtain ρκ,z(z

′) =
∫

Ωp
χ eOc(z′ − y)ga(y)κ(z − y)w(z −

y, z′ − y)dy. Thus, the contribution of the patch pu(z − y) to the evidence
function is now weighted by its confidence. Patches with higher confidence will
support stronger evidence. In this case the weights are given by w(x, x′) =

1
eq(x) exp

(
−κ(x)

h
‖pu(x) − pû(x′)‖a,ϕ

)
.

The inclusion of the confidence mask modifies the patch space scale parameter
h. If the confidence is high, the effective scale h/κ(x) will be lower, thus increasing
the selectivity of the similarity measure. If the information at x is uncertain,
more patches are considered similar. The same reasoning applies to the patch
NL-Poisson energy, with similar modifications to Eq. (9).

5 Experimental results

We tested the proposed methods with gray scale and color images. The energy
for the latter can be obtained by considering a norm for color patches that
adds the norms of the three scalar components: ‖p−→u (x)‖a,ϕ =

∑3
i=1 ‖pui

(x)‖a,ϕ,
where −→u : Ω → R

3 is the color image, and ui, with i = 1, 2, 3, its components
(analogously for ‖ · ‖a,∇). Thus, the weights will take into account the three
channels. Given the weights, each channel is updated using the corresponding
scheme for scalar images. All channels are updated using the same weights. This
scheme can be applied to any Euclidean color space. We show results with RGB
and CIE La*b* color spaces.

In our implementation we use a square patch domain Ωp of side s ∈ N,
with the Gaussian intra-patch weights ga centered on it. For all experiments we
set s = 3a (s should be chosen such that most of the effective support of the
Gaussian fits in the patch, we used a smaller s to lower the computational cost).
This leaves only two independent parameters, namely, the intra-patch Gaussian
width a, and the patch similarity scale h. The former determines the size of the
patch, a parameter inherent to all patch-based techniques. It should be large
enough so as to allow the identification of the image patterns.

In the limit when h → 0, we compute the weights as limh→0 wh(x, x′) =
1

#n(x)δ(x
′−n(x)), where n(x) ⊆ Oc is the set of nearest neighbors of x, i.e.n(x) =

{x′ ∈ Oc : ‖pu(x) − pû(x′)‖a,ϕ = δn}, where δn represents the nearest neighbor
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distance. In practice, we assume that #n(x) = 1, i.e.the nearest neighbor is
unique. The choice of this parameter will be addressed later.

The confidence mask, when used, adds another parameter. We found good
results using the following function:

κ(x) =

{
(1 − κ0)e

−
d(x,∂O)

τκ + κ0 if x ∈ O,
1 if x ∈ Oc,

which shows an exponential decay w.r.t. the distance to the boundary inside
the hole d(·, ∂O), where τκ > 0 is the decay time and κ0 > 0 determines the
asymptotic value reached far away from the boundary.

If a patch centered in the inpainting domain does not fit in the image, we
mirror the image w.r.t. the boundary to complete the patch. Whenever the hole
reaches ∂Ω, the Poisson equation requires a different boundary condition. We
have considered Neuman boundary conditions, i.e.∇u ·n(x) = 0, for x ∈ O∩∂Ω,
where n(x) is the normal direction at the boundary. This amounts again to a
reflection of u w.r.t. ∂Ω.

The computational cost of each iteration is O(A(O) × A(Oc) × s2). This is
typical of non-local methods, and several strategies can be used for speed-up [8,
27].

Figure 2 compares the results of the three methods on a texture with two
different mean intensities, darker on the right half of the image. The inpainting
domain hides all patches on the boundary between the dark and bright textures.
With this we can test the ability of each method to create an interface between
both regions. Situations like these are common in real inpainting problems due
for instance to shadows. Moreover, when inpainting non-regular textures, a good
completion may not be possible just by copying, and creating new patterns
becomes necessary (see Figure 3).

We have also added Gaussian noise with standard deviation σ = 10 to show
the influence of the patch space scale parameter h. Figure 2 shows two results for
each scheme, one with h = 0, and the other with a higher h, chosen empirically
for each method.

Fig. 2. Results with s = 15 and a = 5. The first four columns correspond to the initial
condition, result of path NL-medians, -means and -Poisson. Top row, h = 0, bottom
row h = 0.01, h = 0.05 and h = 0.04, respectively. The used intra-patch weight kernel
ga is shown in each figure on the bottom right. The fifth column shows the value of
the images for a horizontal line going between the circles.

The rightmost column in Figure 2 plots the image values for a horizontal line
between the circles. The interpolation done by the patch NL-Poisson method is
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linear, since this is a solution of the homogeneous Poisson equation. The profile
shown by patch NL-means shows a smooth transition when both regions meet,
whereas the use of the L1 norm yields a sharp edge. The results using a higher
h show some denoising, since for larger h, more patches are regarded as similar

to each patch in Õ and each pixel value is synthesized from more complement
pixels. For inpainting of noiseless images, we use h = 0.

The top row of Figure 3 shows results with the three schemes for a non-regular
texture. The result with patch NL-medians shows image regions copied without
any modification. The boundaries between these regions are determined so that
each patch on the boundary is close to some patch outside the hole. This does not
always yields a smooth transition. Copied patterns can also be seen in the result
of the patch NL-means, but the copies are less sharp, and the discontinuities less
noticeable. The patch NL-Poisson shows a better continuation of the color at the
boundary of the hole. However the inpainted structure looks too blurry (zoom
on the pdf file for details).

Fig. 3. From left to right: Initial condition, result of path NL-medians, -means and
-Poisson. Top: Results with s = 15, a = 5 and h = 0, using the CIE La*b* color space.
Bottom: Results with s = 25, a = 8 and h = 0. Gray scale image.

The bottom row of Figure 3 depicts results on a regular texture. The reg-
ularity of the texture hides the blurring effects of the L2 metrics (both on the
image and gradients). At a stable state, all patches overlapping on a pixel will
agree on its value. Notice that in this case, the patch NL-Poisson is able to re-
construct the illumination gradient of the image. This is imposed to the solution
of the Poisson equation by the boundary conditions. In addition to the non-local
inpainting, this scheme performs also a local interpolation based on the hole’s
boundary. Instead, the other methods copied the information from the bottom
of the image, generating a discontinuity at the top.

The results shown in Figure 4, were computed using a confidence mask shown
at the leftmost column. In both cases the patch NL-medians scheme yields the
best results, comparable to state of the art (see results in [17, 24] for results on
the same images). The images look as a composition of copied regions (although
some parts in the elephant image seem new). Again the patch NL-means shows
blurred results, most noticeable for elephant due to the non-regularity of the
textures. The patch NL-Poisson fails with this image. In this case the gradient
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is not a good feature for computing the weights. However, the results for Figure
4 are still reasonable, it did recover the structure of the image. Due to the
averaging of gradients, when overlapping patches do not agree on the value of a
pixel, lower gradients may appear. These generate phantom edges surrounding
the cylinders. Presumably a more robust estimation of the gradient would not
have this problem. We are currently developing a scheme using the L1 norm
between the gradients of patches.

The initial condition for elephant is the original image, whereas for cylinders
the hole was filled with 128 as constant gray level. A confidence mask κ with low
confidence inside the hole helps in diminishing the influence of the initialization.
Further results are available at: http://gpi.upf.edu/static/vnli.

Fig. 4. From left to right, inpainting domain with confidence mask, result of path NL-
medians, -means and -Poisson (the latter only for the first row). Top: cylinders- Results
with s = 27, a = 9 and h = 0 for patch NL-medians and -means and s = 33, a = 1
and h = 0 patch NL-Poisson. Bottom: elepahnt- Results with s = 19, a = 6 and h = 0.
The parameters of the confidence mask are τ0 = 5 and κ0 = 0.4 in all cases except for
the patch NL-medians with the bottom image, in which we set κ0 = 0.1. Results using
RGB. Please refer to [17, 24] for other results on the same images.

6 Conclusions and future work

In this work we present a variational framework for non-local image inpaint-
ing. The proposed energy lends itself to intuitive interpretations, and contrary
to previous variational models, allows a straightforward minimization using a
coordinate descent scheme. Beyond the specific application of inpainting, this
framework provides also a sound variational modelling of non-local regulariz-
ers with adaptive weights, extending previous work in which the weights are
considered known and fixed.

Starting from this model, we derived three different inpainting schemes, each
one corresponding to a different norm measuring the distance between patches.
We showed results on synthetic and natural images comparing their properties.

The derived patch NL-means provides a variational interpretation of the
methods proposed by [32, 38]. The patch NL-medians is the one that showed
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the best overall performance, comparable with the state of the art. The results
obtained suggest a possible relation with the piece-wise traslation models of [1,
16]. The patch NL-Poisson presents two interesting features. First, the similar-
ity weights are computed based on the gradients, allowing the transference of
information from areas with different intensity level. Second, the image com-
pletion is the result of a Poisson equation, thus incorporating some basic local
regularization, meaning the completion must be differentiable and its gradient
squared integrable. This traduces in a local interpolation based on the image
values at the boundary of the inpainting domain. This method performs well for
structured textures, but fails for non-regular textures.

We are currently exploring several additional aspects of this framework, in-
cluding the use of robust norms in the general ϕ setting and the L1 norm between
patch gradients.
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